Resolution complexity of perfect mathcing principles for sparse graphs
نویسندگان
چکیده
The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 Ω(n), where n is the number of vertices inGn. This lower bound matches with the upper bound 2 O(n) up to an application of a polynomial. Our result implies the 2Ω(n) lower bounds for the complete graph Kn and the complete bipartite graph Kn,O(n) that improve the lower bounds followed from [Raz04]. Our results also implies the well-known exponential lower bounds on the resolution complexity of the pigeonhole principle, the functional pigeonhole principle and the pigeonhole principle over a graph. We also prove the following corollary. For every natural number d, for every n large enough, for every function h : {1, 2, . . . , n} → {1, 2, . . . , d}, we construct a graph with n vertices that has the following properties. There exists a constant D such that the degree of the i-th vertex is at least h(i) and at most D, and it is impossible to make all degrees equal to h(i) by removing the graph’s edges. Moreover, any proof of this statement in the resolution proof system has size 2Ω(n). This result implies well-known exponential lower bounds on the Tseitin formulas as well as new results: for example, the same property of a complete graph.
منابع مشابه
Resolution Complexity of Perfect Matching Principles for Sparse Graphs
The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 Ω(n), where n is the number of vertices inGn. This lower bound matches with the upper bound 2 O(n...
متن کاملTight Lower Bounds on the Resolution Complexity of Perfect Matching Principles
The resolution complexity of the perfect matching principle was studied by Razborov [14], who developed a technique for proving its lower bounds for dense graphs. We construct a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 where n is the number of vertices in Gn. This lower bound is tight up to some polynomial. Our result i...
متن کاملRecognizing Sparse Perfect Elimination Bipartite Graphs
When applying Gaussian elimination to a sparse matrix, it is desirable to avoid turning zeros into non-zeros to preserve the sparsity. The class of perfect elimination bipartite graphs is closely related to square matrices that Gaussian elimination can be applied to without turning any zero into a non-zero. Existing literature on the recognition of this class and finding suitable pivots mainly ...
متن کاملSplit-Perfect Graphs: Characterizations and Algorithmic Use
Two graphs G and H with the same vertex set V are P4-isomorphic if every four vertices {a, b, c, d} ⊆ V induce a chordless path (denoted by P4) in G if and only if they induce a P4 in H. We call a graph split-perfect if it is P4-isomorphic to a split graph (i.e., a graph being partitionable into a clique and a stable set). This paper characterizes the new class of split-perfect graphs using the...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 21 شماره
صفحات -
تاریخ انتشار 2014